Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 485
Filtrar
1.
Reproduction ; 167(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401263

RESUMO

In brief: The dissociation of HORMA domain protein 2 (HORMAD2) from the synaptonemal complex is tightly regulated. This study reveals that the N-terminal region of HORMAD2 is critical for its dissociation from synapsed meiotic chromosomes. Abstract: During meiosis, homologous chromosomes undergo synapsis and recombination. HORMA domain proteins regulate key processes in meiosis. Mammalian HORMAD1 and HORMAD2 localize to unsynapsed chromosome axes but are removed upon synapsis by the TRIP13 AAA+ ATPase. TRIP13 engages the N-terminal region of HORMA domain proteins to induce an open conformation, resulting in the disassembly of protein complexes. Here, we report introduction of a 3×FLAG-HA tag to the N-terminus of HORMAD2 in mice. Coimmunoprecipitation coupled with mass spectrometry identified HORMAD1 and SYCP2 as HORMAD2-associated proteins in the testis. Unexpectedly, the N-terminal tagging of HORMAD2 resulted in its abnormal persistence along synapsed regions in pachynema and ectopic localization to telomeres in diplonema. Super-resolution microscopy revealed that 3×FLAG-HA-HORMAD2 was distributed along the central region of the synaptonemal complex, whereas wild-type HORMAD1 persisted along the lateral elements in 3×FLAG-HA-HORMAD2 meiocytes. Although homozygous mice completed meiosis and were fertile, homozygous males exhibited a significant reduction in sperm count. Collectively, these results suggest that the N-terminus of HORMAD2 is important for its timely removal from meiotic chromosome axes.


Assuntos
Proteínas de Ciclo Celular , Sêmen , Animais , Masculino , Camundongos , Proteínas de Ciclo Celular/metabolismo , Pareamento Cromossômico , Mamíferos/genética , Meiose , Prófase Meiótica I , Sêmen/metabolismo , Complexo Sinaptonêmico/metabolismo
2.
Methods Mol Biol ; 2770: 263-285, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38351458

RESUMO

Immunocytochemical analysis of meiotic proteins on mouse chromosome spreads is one method of choice to study prophase I chromosome organization and homologous recombination. In recent decades, the development of microscopic approaches led to the production of a large number of images that monitor fluorescent proteins, defined as fluorescent objects, and a major challenge facing the community is the deep analysis of these fluorescent objects (measurement of object length, intensity, distance between objects, as well as foci identification, counting, and colocalization). We propose a set of tools designed from the macro language of the widely used image analysis software ImageJ (Schindelin et al., Nat Methods 9: 676-682, 2012), embedded in the "MeiQuant" macro, which are specifically designed for analyzing objects in the field of meiosis. Our aim is to propose a unified evolutive common tool for image analysis, with a specific focus on mouse prophase I meiotic events.


Assuntos
Meiose , Prófase Meiótica I , Animais , Camundongos , Prófase , Cromossomos
3.
PLoS Genet ; 20(2): e1011175, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38377115

RESUMO

Meiotic recombination between homologous chromosomes is initiated by the formation of hundreds of programmed double-strand breaks (DSBs). Approximately 10% of these DSBs result in crossovers (COs), sites of physical DNA exchange between homologs that are critical to correct chromosome segregation. Virtually all COs are formed by coordinated efforts of the MSH4/MSH5 and MLH1/MLH3 heterodimers, the latter representing the defining marks of CO sites. The regulation of CO number and position is poorly understood, but undoubtedly requires the coordinated action of multiple repair pathways. In a previous report, we found gene-trap disruption of the DNA helicase, FANCJ (BRIP1/BACH1), elicited elevated numbers of MLH1 foci and chiasmata. In somatic cells, FANCJ interacts with numerous DNA repair proteins including MLH1, and we hypothesized that FANCJ functions with MLH1 to regulate the major CO pathway. To further elucidate the meiotic function of FANCJ, we produced three new Fancj mutant mouse lines via CRISPR/Cas9 gene editing: a full-gene deletion, truncation of the N-terminal Helicase domain, and a C-terminal dual-tagged allele. We also generated an antibody against the C-terminus of the mouse FANCJ protein. Surprisingly, none of our Fancj mutants show any change in either MLH1 focus counts during pachynema or total CO number at diakinesis of prophase I. We find evidence that FANCJ and MLH1 do not interact in meiosis; further, FANCJ does not co-localize with MSH4, MLH1, or MLH3 in meiosis. Instead, FANCJ co-localizes with BRCA1 and TOPBP1, forming discrete foci along the chromosome cores beginning in early meiotic prophase I and densely localized to unsynapsed chromosome axes in late zygonema and to the XY chromosomes in early pachynema. Fancj mutants also exhibit a subtle persistence of DSBs in pachynema. Collectively, these data indicate a role for FANCJ in early DSB repair, but they rule out a role for FANCJ in MLH1-mediated CO events.


Assuntos
Meiose , Prófase Meiótica I , Animais , Masculino , Camundongos , Alelos , DNA Helicases/genética , Reparo do DNA/genética , Meiose/genética , Prófase Meiótica I/genética
4.
J Cell Physiol ; 239(4): e31201, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38284481

RESUMO

Dynamic nuclear architecture and chromatin organizations are the key features of the mid-prophase I in mammalian meiosis. The chromatin undergoes major changes, including meiosis-specific spatiotemporal arrangements and remodeling, the establishment of chromatin loop-axis structure, pairing, and crossing over between homologous chromosomes, any deficiencies in these events may induce genome instability, subsequently leading to failure to produce gametes and infertility. Despite the significance of chromatin structure, little is known about the location of chromatin marks and the necessity of their balance during meiosis prophase I. Here, we show a thorough cytological study of the surface-spread meiotic chromosomes of mouse spermatocytes for H3K9,14,18,23,27,36, H4K12,16 acetylation, and H3K4,9,27,36 methylation. Active acetylation and methylation marks on H3 and H4, such as H3K9ac, H3K14ac, H3K18ac, H3K36ac, H3K56ac, H4K12ac, H4K16ac, and H3K36me3 exhibited pan-nuclear localization away from heterochromatin. In comparison, repressive marks like H3K9me3 and H3K27me3 are localized to heterochromatin. Further, taking advantage of the delivery of small-molecule chemical inhibitors methotrexate (heterochromatin enhancer), heterochromatin inhibitor, anacardic acid (histone acetyltransferase inhibitor), trichostatin A (histone deacetylase inhibitor), IOX1 (JmjC demethylases inhibitor), and AZ505 (methyltransferase inhibitor) in seminiferous tubules through the rete testis route, revealed that alteration in histone modifications enhanced the centromere mislocalization, chromosome breakage, altered meiotic recombination and reduced sperm count. Specifically, IOX1 and AZ505 treatment shows severe meiotic phenotypes, including altering chromosome axis length and chromatin loop size via transcriptional regulation of meiosis-specific genes. Our findings highlight the importance of balanced chromatin modifications in meiotic prophase I chromosome organization and instability.


Assuntos
Histonas , Prófase Meiótica I , Masculino , Animais , Camundongos , Histonas/metabolismo , Meiose , Heterocromatina , Sêmen , Cromatina/genética , Processamento de Proteína Pós-Traducional , Mamíferos/metabolismo
5.
Cell Rep ; 43(1): 113651, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38175751

RESUMO

Dynamic chromosome remodeling and nuclear compartmentalization take place during mammalian meiotic prophase I. We report here that the crucial roles of male pachynema-specific protein (MAPS) in pachynema progression might be mediated by its liquid-liquid phase separation in vitro and in cellulo. MAPS forms distinguishable liquid phases, and deletion or mutations of its N-terminal amino acids (aa) 2-9 disrupt its secondary structure and charge properties, impeding phase separation. Maps-/- pachytene spermatocytes exhibit defects in nucleus compartmentalization, including defects in forming sex bodies, altered nucleosome composition, and disordered chromatin accessibility. MapsΔ2-9/Δ2-9 male mice expressing MAPS protein lacking aa 2-9 phenocopy Maps-/- mice. Moreover, a frameshift mutation in C3orf62, the human counterpart of Maps, is correlated with nonobstructive azoospermia in a patient exhibiting pachynema arrest in spermatocyte development. Hence, the phase separation property of MAPS seems essential for pachynema progression in mouse and human spermatocytes.


Assuntos
Cromatina , Meiose , Humanos , Masculino , Camundongos , Animais , Cromatina/metabolismo , Estágio Paquíteno , 60422 , Prófase Meiótica I , Espermatócitos/metabolismo , Mamíferos/genética
6.
FASEB J ; 38(1): e23361, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38085152

RESUMO

Oocyte meiotic prophase I (MI) is an important event in female reproduction. Breast cancer amplified sequence 2 (BCAS2) is a component of the spliceosome. Previous reports have shown that BCAS2 is critical in male germ cell meiosis, oocyte development, and early embryo genome integrity. However, the role of BCAS2 in oocyte meiosis has not been reported. We used Stra8-GFPCre mice to knock out Bcas2 in oocytes during the pachytene phase. The results of fertility tests showed that Bcas2 conditional knockout (cKO) in oocytes results in infertility in female mice. Morphological analysis showed that the number of primordial follicles in the ovaries of 2-month-old (M) mice was significantly reduced and that follicle development was blocked. Further analysis showed that the number of primordial follicles decreased and that follicle development was slowed in 7-day postpartum (dpp) ovaries. Moreover, primordial follicles undergo apoptosis, and DNA damage cannot be repaired in primary follicle oocytes. Meiosis was abnormal; some oocytes could not reach the diplotene stage, and more oocytes could not develop to the dictyotene stage. Alternative splicing (AS) analysis revealed abnormal AS of deleted in azoospermia like (Dazl) and diaphanous related formin 2 (Diaph2) oogenesis-related genes in cKO mouse ovaries, and the process of AS was involved by CDC5L and PRP19.


Assuntos
Meiose , Prófase Meiótica I , Masculino , Feminino , Camundongos , Animais , Meiose/genética , Processamento Alternativo , RNA Mensageiro/metabolismo , Oócitos/metabolismo , Proteínas de Neoplasias/metabolismo
7.
Dev Cell ; 58(24): 3009-3027.e6, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37963468

RESUMO

During meiosis, the chromatin and transcriptome undergo prominent switches. Although recent studies have explored the genome reorganization during spermatogenesis, the chromatin remodeling in oogenesis and characteristics of homologous pairing remain largely elusive. We comprehensively compared chromatin structures and transcriptomes at successive substages of meiotic prophase in both female and male mice using low-input high-through chromosome conformation capture (Hi-C) and RNA sequencing (RNA-seq). Compartments and topologically associating domains (TADs) gradually disappeared and slowly recovered in both sexes. We found that homologs adopted different sex-conserved pairing strategies prior to and after the leptotene-to-zygotene transition, changing from long interspersed nuclear element (LINE)-enriched compartments B to short interspersed nuclear element (SINE)-enriched compartments A. We complemented marker genes and predicted the sex-specific meiotic sterile genes for each substage. This study provides valuable insights into the similarities and distinctions between sexes in chromosome architecture, homologous pairing, and transcriptome during meiotic prophase of both oogenesis and spermatogenesis.


Assuntos
Meiose , Espermatogênese , Masculino , Feminino , Camundongos , Animais , Meiose/genética , Espermatogênese/genética , Prófase , Prófase Meiótica I/genética , Cromatina/genética , Oogênese/genética , Pareamento Cromossômico/genética
8.
Reprod Biol Endocrinol ; 21(1): 90, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37784186

RESUMO

In human female primordial germ cells, the transition from mitosis to meiosis begins from the fetal stage. In germ cells, meiosis is arrested at the diplotene stage of prophase in meiosis I (MI) after synapsis and recombination of homologous chromosomes, which cannot be segregated. Within the follicle, the maintenance of oocyte meiotic arrest is primarily attributed to high cytoplasmic concentrations of cyclic adenosine monophosphate (cAMP). Depending on the specific species, oocytes can remain arrested for extended periods of time, ranging from months to even years. During estrus phase in animals or the menstrual cycle in humans, the resumption of meiosis occurs in certain oocytes due to a surge of luteinizing hormone (LH) levels. Any factor interfering with this process may lead to impaired oocyte maturation, which in turn affects female reproductive function. Nevertheless, the precise molecular mechanisms underlying this phenomenon has not been systematically summarized yet. To provide a comprehensive understanding of the recently uncovered regulatory network involved in oocyte development and maturation, the progress of the cellular and molecular mechanisms of oocyte nuclear maturation including meiosis arrest and meiosis resumption is summarized. Additionally, the advancements in understanding the molecular cytoplasmic events occurring in oocytes, such as maternal mRNA degradation, posttranslational regulation, and organelle distribution associated with the quality of oocyte maturation, are reviewed. Therefore, understanding the pathways regulating oocyte meiotic arrest and resumption will provide detailed insight into female reproductive system and provide a theoretical basis for further research and potential approaches for novel disease treatments.


Assuntos
Oócitos , Oogênese , Animais , Feminino , Humanos , Oogênese/genética , Oócitos/metabolismo , Meiose , Prófase Meiótica I , Folículo Ovariano
9.
Methods Mol Biol ; 2677: 185-201, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37464243

RESUMO

The mammalian reproductive cycle, including those of humans and mice, begins very early in development. In utero, the ovaries become populated with primordial germ cells (PGCs) that will generate the oogonia. First, these cells proliferate mitotically, and then they trigger the meiotic program and initiate meiotic prophase I. Since these processes happen during gestation, their study had been very limited and challenging. Recently, we reported that, in the naked mole-rat (Heterocephalus glaber) ovary, there is mitotic expansion of the PGCs, and the initiation of the meiotic program occurs postnatally. In this chapter, we present a comprehensive collection of protocols that permit the analysis of naked mole-rat germ cells, from PGCs to oocytes, in meiotic prophase I, using in vivo and in vitro approaches.


Assuntos
Prófase Meiótica I , Ovário , Humanos , Feminino , Camundongos , Animais , Meiose , Oócitos , Células Germinativas , Mamíferos
10.
Int J Mol Sci ; 24(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37511273

RESUMO

In the oocyte nucleus, called the germinal vesicle (GV) at the prolonged diplotene stage of the meiotic prophase, chromatin undergoes a global rearrangement, which is often accompanied by the cessation of its transcriptional activity. In many mammals, including mice and humans, chromatin condenses around a special nuclear organelle called the atypical nucleolus or formerly nucleolus-like body. Chromatin configuration is an important indicator of the quality of GV oocytes and largely predicts their ability to resume meiosis and successful embryonic development. In mice, GV oocytes are traditionally divided into the NSN (non-surrounded nucleolus) and SN (surrounded nucleolus) based on the specific chromatin configuration. The NSN-SN transition is a key event in mouse oogenesis and the main prerequisite for the normal development of the embryo. As for humans, there is no single nomenclature for the chromatin configuration at the GV stage. This often leads to discrepancies and misunderstandings, the overcoming of which should expand the scope of the application of mouse oocytes as a model for developing new methods for assessing and improving the quality of human oocytes. As a first approximation and with a certain proviso, the mouse NSN/SN classification can be used for the primary characterization of human GV oocytes. The task of this review is to analyze and discuss the existing classifications of chromatin configuration in mouse and human GV oocytes with an emphasis on transcriptional activity extinction at the end of oocyte growth.


Assuntos
Cromatina , Meiose , Humanos , Animais , Camundongos , Cromatina/genética , Prófase Meiótica I , Oócitos , Núcleo Celular , Mamíferos
11.
BMC Biol ; 21(1): 99, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37143068

RESUMO

BACKGROUND: Diplonemid flagellates are among the most abundant and species-rich of known marine microeukaryotes, colonizing all habitats, depths, and geographic regions of the world ocean. However, little is known about their genomes, biology, and ecological role. RESULTS: We present the first nuclear genome sequence from a diplonemid, the type species Diplonema papillatum. The ~ 280-Mb genome assembly contains about 32,000 protein-coding genes, likely co-transcribed in groups of up to 100. Gene clusters are separated by long repetitive regions that include numerous transposable elements, which also reside within introns. Analysis of gene-family evolution reveals that the last common diplonemid ancestor underwent considerable metabolic expansion. D. papillatum-specific gains of carbohydrate-degradation capability were apparently acquired via horizontal gene transfer. The predicted breakdown of polysaccharides including pectin and xylan is at odds with reports of peptides being the predominant carbon source of this organism. Secretome analysis together with feeding experiments suggest that D. papillatum is predatory, able to degrade cell walls of live microeukaryotes, macroalgae, and water plants, not only for protoplast feeding but also for metabolizing cell-wall carbohydrates as an energy source. The analysis of environmental barcode samples shows that D. papillatum is confined to temperate coastal waters, presumably acting in bioremediation of eutrophication. CONCLUSIONS: Nuclear genome information will allow systematic functional and cell-biology studies in D. papillatum. It will also serve as a reference for the highly diverse diplonemids and provide a point of comparison for studying gene complement evolution in the sister group of Kinetoplastida, including human-pathogenic taxa.


Assuntos
Eucariotos , Kinetoplastida , Humanos , Eucariotos/genética , Prófase Meiótica I , Euglenozoários/genética , Kinetoplastida/genética , Família Multigênica , Filogenia
12.
J Cell Biol ; 222(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36930220

RESUMO

Pachytene piRNA biogenesis is a hallmark of the germline, distinct from another wave of pre-pachytene piRNA biogenesis with regard to the lack of a secondary amplification process known as the Ping-pong cycle. However, the underlying molecular mechanism and the venue for the suppression of the Ping-pong cycle remain elusive. Here, we showed that a testis-specific protein, ADAD2, interacts with a TDRD family member protein RNF17 and is associated with P-bodies. Importantly, ADAD2 directs RNF17 to repress Ping-pong activity in pachytene piRNA biogenesis. The P-body localization of RNF17 requires the intrinsically disordered domain of ADAD2. Deletion of Adad2 or Rnf17 causes the mislocalization of each other and subsequent Ping-pong activity derepression, secondary piRNAs overproduced, and disruption of P-body integrity at the meiotic stage, thereby leading to spermatogenesis arrested at the round spermatid stage. Collectively, by identifying the ADAD2-dependent mechanism, our study reveals a novel function of P-bodies in suppressing Ping-pong activity in pachytene piRNA biogenesis.


Assuntos
RNA de Interação com Piwi , Corpos de Processamento , Masculino , Prófase Meiótica I , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espermatogênese/genética
13.
BMC Biol ; 21(1): 49, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36882745

RESUMO

BACKGROUND: Ovarian folliculogenesis is a tightly regulated process leading to the formation of functional oocytes and involving successive quality control mechanisms that monitor chromosomal DNA integrity and meiotic recombination. A number of factors and mechanisms have been suggested to be involved in folliculogenesis and associated with premature ovarian insufficiency, including abnormal alternative splicing (AS) of pre-mRNAs. Serine/arginine-rich splicing factor 1 (SRSF1; previously SF2/ASF) is a pivotal posttranscriptional regulator of gene expression in various biological processes. However, the physiological roles and mechanism of SRSF1 action in mouse early-stage oocytes remain elusive. Here, we show that SRSF1 is essential for primordial follicle formation and number determination during meiotic prophase I. RESULTS: The conditional knockout (cKO) of Srsf1 in mouse oocytes impairs primordial follicle formation and leads to primary ovarian insufficiency (POI). Oocyte-specific genes that regulate primordial follicle formation (e.g., Lhx8, Nobox, Sohlh1, Sohlh2, Figla, Kit, Jag1, and Rac1) are suppressed in newborn Stra8-GFPCre Srsf1Fl/Fl mouse ovaries. However, meiotic defects are the leading cause of abnormal primordial follicle formation. Immunofluorescence analyses suggest that failed synapsis and an inability to undergo recombination result in fewer homologous DNA crossovers (COs) in the Srsf1 cKO mouse ovaries. Moreover, SRSF1 directly binds and regulates the expression of the POI-related genes Six6os1 and Msh5 via AS to implement the meiotic prophase I program. CONCLUSIONS: Altogether, our data reveal the critical role of an SRSF1-mediated posttranscriptional regulatory mechanism in the mouse oocyte meiotic prophase I program, providing a framework to elucidate the molecular mechanisms of the posttranscriptional network underlying primordial follicle formation.


Assuntos
Meiose , Prófase Meiótica I , Fatores de Processamento de Serina-Arginina , Animais , Feminino , Camundongos , Processamento Alternativo , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Meiose/genética , Oócitos , Ovário , Fatores de Processamento de Serina-Arginina/genética
14.
PLoS Genet ; 19(2): e1010666, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36809245

RESUMO

Chromosome movements and licensing of synapsis must be tightly regulated during early meiosis to ensure accurate chromosome segregation and avoid aneuploidy, although how these steps are coordinated is not fully understood. Here we show that GRAS-1, the worm homolog of mammalian GRASP/Tamalin and CYTIP, coordinates early meiotic events with cytoskeletal forces outside the nucleus. GRAS-1 localizes close to the nuclear envelope (NE) in early prophase I and interacts with NE and cytoskeleton proteins. Delayed homologous chromosome pairing, synaptonemal complex (SC) assembly, and DNA double-strand break repair progression are partially rescued by the expression of human CYTIP in gras-1 mutants, supporting functional conservation. However, Tamalin, Cytip double knockout mice do not exhibit obvious fertility or meiotic defects, suggesting evolutionary differences between mammals. gras-1 mutants show accelerated chromosome movement during early prophase I, implicating GRAS-1 in regulating chromosome dynamics. GRAS-1-mediated regulation of chromosome movement is DHC-1-dependent, placing it acting within the LINC-controlled pathway, and depends on GRAS-1 phosphorylation at a C-terminal S/T cluster. We propose that GRAS-1 coordinates the early steps of homology search and licensing of SC assembly by regulating the pace of chromosome movement in early prophase I.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Humanos , Camundongos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Pareamento Cromossômico , Segregação de Cromossomos , Mamíferos/genética , Meiose , Prófase Meiótica I , Complexo Sinaptonêmico/metabolismo
15.
Reprod Sci ; 30(1): 169-180, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35501593

RESUMO

Autophagy plays vital roles in mouse female germ cells, but the potential mechanism is largely unknown. In this study, by interrogating single-cell RNA-seq dataset, we investigated the dynamic expression of autophagy-related genes in seven types of germ cells (mitosis, pre-leptotene, leptotene, zygotene, pachytene, diplotene, and dictyate) and discovered stage-specific autophagy-related genes. Using immunofluorescence (IF) and transmission electron microscopy (TEM), autophagy activity and autophagosome numbers were revealed from mitosis to follicular assembly (E12.5 (embryonic day 12.5) to P5 (postnatal day 5)). Furthermore, single-sample gene set enrichment analysis (ssGSEA) was performed to validate the autophagy kinetics from E12.5 to P5. Our study proved that the mitosis, diplotene, and dictyate female germ cells had relatively higher autophagy activity among the seven subtypes. In summary, our work provided an autophagy map, suggesting that autophagy was complicated in mouse female germ cell development from the fetal to postnatal life, which paved a new insight for deciphering the autophagy regulatory networks for cell-fate transition and female infertility issues like primary ovarian insufficiency (POI).


Assuntos
Feto , Células Germinativas , Camundongos , Animais , Feminino , Diferenciação Celular , Prófase Meiótica I , Autofagia
16.
Genes (Basel) ; 13(12)2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36553461

RESUMO

Nonhomologous chromosome interactions take place in both somatic and meiotic cells. Prior to this study, we had discovered special contacts through the SYCP3 (synaptonemal complex protein 3) filament between the short arms of nonhomologous acrocentrics at the pachytene stage in the Alay mole vole, and these contacts demonstrate several patterns from proximity to the complete fusion stage. Here, we investigated the nonhomologous chromosome contacts in meiotic prophase I. It turned out that such contacts do not introduce changes into the classic distribution of DNA double-strand breaks. It is noteworthy that not all meiotic contacts were localized in the H3k9me3-positive heterochromatic environment. Both in the mid zygotene and in the early-mid diplotene, three types of contacts (proximity, touching, and anchoring/tethering) were observed, whereas fusion seems to be characteristic only for pachytene. The number of contacts in the mid pachytene is significantly higher than that in the zygotene, and the distance between centromeres in nonhomologous contacts is also the smallest in mid pachytene for all types of contacts. Thus, this work provides a new insight into the behavior of meiotic contacts during prophase I and points to avenues of further research.


Assuntos
Meiose , Prófase Meiótica I , Animais , Prófase Meiótica I/genética , Roedores/genética , Arvicolinae/genética , Centrômero/genética
17.
J Proteome Res ; 21(11): 2715-2726, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36223561

RESUMO

Meiotic prophase I (MPI) is the most important event in mammalian meiosis. The status of the chromosome-binding proteins (CBPs) and the corresponding complexes and their functions in MPI have not yet been well scrutinized. Quantitative proteomics focused on MPI-related CBPs was accomplished, in which mouse primary spermatocytes in four different subphases of MPI were collected, and chromosome-enriched proteins were extracted and quantitatively identified. According to a stringent criterion, 1136 CBPs in the MPI subphases were quantified. Looking at the dynamic patterns of CBP abundance in response to MPI progression, the patterns were broadly divided into two groups: high abundance in leptotene and zygotene or that in pachytene and diplotene. Furthermore, 152 such CBPs were regarded as 26 CBP complexes with strict filtration, in which some of these complexes were perceived to be MPI-dependent for the first time. These complexes basically belonged to four functional categories, while their dynamic abundance changes following MPI appeared; the functions of DNA replication decreased; and transcription and synapsis were activated in zygotene, pachytene, and diplotene; in contrast to the traditional prediction, condensin activity weakened in pachytene and diplotene. Profiling of protein complexes thus offered convincing evidence of the importance of CBP complexes in MPI.


Assuntos
Prófase Meiótica I , Espermatócitos , Masculino , Camundongos , Animais , Espermatócitos/metabolismo , Meiose , Proteínas de Transporte/metabolismo , Cromossomos , Mamíferos/genética
18.
Proc Natl Acad Sci U S A ; 119(42): e2204701119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36215502

RESUMO

The synaptonemal complex (SC) is a proteinaceous scaffold that is assembled between paired homologous chromosomes during the onset of meiosis. Timely expression of SC coding genes is essential for SC assembly and successful meiosis. However, SC components have an intrinsic tendency to self-organize into abnormal repetitive structures, which are not assembled between the paired homologs and whose formation is potentially deleterious for meiosis and gametogenesis. This creates an interesting conundrum, where SC genes need to be robustly expressed during meiosis, but their expression must be carefully regulated to prevent the formation of anomalous SC structures. In this manuscript, we show that the Polycomb group protein Sfmbt, the Drosophila ortholog of human MBTD1 and L3MBTL2, is required to avoid excessive expression of SC genes during prophase I. Although SC assembly is normal after Sfmbt depletion, SC disassembly is abnormal with the formation of multiple synaptonemal complexes (polycomplexes) within the oocyte. Overexpression of the SC gene corona and depletion of other Polycomb group proteins are similarly associated with polycomplex formation during SC disassembly. These polycomplexes are highly dynamic and have a well-defined periodic structure. Further confirming the importance of Sfmbt, germ line depletion of this protein is associated with significant metaphase I defects and a reduction in female fertility. Since transcription of SC genes mostly occurs during early prophase I, our results suggest a role of Sfmbt and other Polycomb group proteins in downregulating the expression of these and other early prophase I genes during later stages of meiosis.


Assuntos
Meiose , Complexo Sinaptonêmico , Proteínas Cromossômicas não Histona/genética , Pareamento Cromossômico , Feminino , Humanos , Prófase Meiótica I , Proteínas do Grupo Polycomb/genética , Complexo Sinaptonêmico/genética
19.
Sci Rep ; 12(1): 15426, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104379

RESUMO

Spatiotemporal regulation of proteins and RNAs is essential for the precise development of reproductive tissues in many organisms. The anther, a prominent part of the male reproductive organ in plants, contains several somatic cell layers named the anther wall and, within it, the germ cells. Here, we successfully developed a simple 3D organ-immunoimaging technique for rice anthers, which distinguishes each individual cell from the four somatic cell layers and germ cells without the need for transformation, embedding, sectioning, or clearing. The 3D immunostaining method is also applicable to the intracellular localization of meiosis-specific proteins in meiocytes, as exemplified by MEL1, a germ cell-specific ARGONAUTE in the cytoplasm, and ZEP1, a pachytene marker on meiotic chromosomes. Our 3D multiple immunostaining method with single-cell and intracellular resolution will contribute to a comprehensive organ-level elucidation of molecular mechanisms and cellular connectivity.


Assuntos
Oryza , Proteínas Argonautas/genética , Meiose , Prófase Meiótica I , Oryza/genética , Pólen/genética
20.
Chromosoma ; 131(4): 193-205, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35960388

RESUMO

In most eukaryotes, pairing of homologous chromosomes is an essential feature of meiosis that ensures homologous recombination and segregation. However, when the pairing process begins, it is still under investigation. Contrasting data exists in Mus musculus, since both leptotene DSB-dependent and preleptotene DSB-independent mechanisms have been described. To unravel this contention, we examined homologous pairing in pre-meiotic and meiotic Mus musculus cells using a three-dimensional fluorescence in situ hybridization-based protocol, which enables the analysis of the entire karyotype using DNA painting probes. Our data establishes in an unambiguously manner that 73.83% of homologous chromosomes are already paired at premeiotic stages (spermatogonia-early preleptotene spermatocytes). The percentage of paired homologous chromosomes increases to 84.60% at mid-preleptotene-zygotene stage, reaching 100% at pachytene stage. Importantly, our results demonstrate a high percentage of homologous pairing observed before the onset of meiosis; this pairing does not occur randomly, as the percentage was higher than that observed in somatic cells (19.47%) and between nonhomologous chromosomes (41.1%). Finally, we have also observed that premeiotic homologous pairing is asynchronous and independent of the chromosome size, GC content, or presence of NOR regions.


Assuntos
Meiose , Prófase Meiótica I , Animais , Camundongos , Masculino , Hibridização in Situ Fluorescente , Cariótipo , Espermatócitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...